Simultaneously Sparse Solutions to Linear Inverse Problems with Multiple System Matrices and a Single Observation Vector
نویسندگان
چکیده
A problem that arises in slice-selective magnetic resonance imaging (MRI) radio-frequency (RF) excitation pulse design is abstracted as a novel linear inverse problem with a simultaneous sparsity constraint. Multiple unknown signal vectors are to be determined, where each passes through a different system matrix and the results are added to yield a single observation vector. Given the matrices and lone observation, the objective is to find a simultaneously sparse set of unknown vectors that approximately solves the system. We refer to this as the multiple-system single-output (MSSO) simultaneous sparse approximation problem. This manuscript contrasts the MSSO problem with other simultaneous sparsity problems and conducts an initial exploration of algorithms with which to solve it. Greedy algorithms and techniques based on convex relaxation are derived and compared empirically. Experiments involve sparsity pattern recovery in noiseless and noisy settings and MRI RF pulse design.
منابع مشابه
A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملInputs and Outputs Estimation in Inverse DEA
The present study addresses the following question: if among a group of decision making units, the decision maker is required to increase inputs and outputs to a particular unit in which the DMU, with respect to other DMUs, maintains or improves its current efficiencylevel, how much should the inputs and outputs of the DMU increase? This question is considered as a problem of inverse data envel...
متن کاملEigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملOptimal Allocation of Resources Using the Ideal-Solutions
This paper proposes a new method based on the ideal input vector to estimate inputs of a given decision making unit (DMU) when some or all of its outputs are increased to maintain its current efficiency level. In other words, this paper studied the following question: How much would be the increase in the inputs of the DMU if the decision maker increases certain outputs to a particular unit in ...
متن کاملFactored sparse inverse covariance matrices
Most HMM-based speech recognition systems use Gaussian mixtures as observation probability density functions. An important goal in all such systems is to improve parsimony. One method is to adjust the type of covariance matrices used. In this work, factored sparse inverse covariance matrices are introduced. Based on U DU factorization, the inverse covariance matrix can be represented using line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM journal on scientific computing : a publication of the Society for Industrial and Applied Mathematics
دوره 31 6 شماره
صفحات -
تاریخ انتشار 2010